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Abstract

The genetic diversity among human immunodeficiency virus (HIV) subtypes as well as the 

variability of viral sequences found in HIV-infected individuals presents a number of difficult 

obstacles for the development of universally effective HIV treatment and prevention methods. 

Here, we present a brief summary of recent developments in the analysis of viral genetics and 

human genomics to provide insight into future methods for HIV treatment and prevention. Recent 

studies have mined viral sequences found in newly infected individuals to identify common 

features of all transmitted viruses that could provide potential targets for HIV vaccine 

development. Analysis of human immunogenetics has identified specific alleles associated with 

reduced virus loads in HIV-infected individuals providing valuable information that may influence 

individual responses to treatment and prevention methods. Increased sensitivity of antiretroviral 

drug resistance testing has improved the detection of hidden drug resistant virus but also 

highlighted the potential for drug resistant viruses to reduce the effectiveness of clinical treatment 

regimens. The rapidly expanding amount of data generated by studies of viral genetics and human 

immunogenetics will provide valuable information to guide the design of new strategies to 

improve clinical treatment and enhance HIV vaccine development.
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Introduction

The pandemic of human immunodeficiency virus (HIV) infection continues to pose an 

enormously difficult public health challenge for a multitude of reasons. One of the most 

daunting aspects of the HIV epidemic is the extremely high level of genetic diversity among 

the 13 recognized global subtypes and at least 51 circulating recombinant forms [1]. The 
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degree of global diversity observed originates with the error-prone nature of the viral 

replication machinery and the ability of the viral genome to incorporate multiple nucleotide 

substitutions which, within infected individuals, results in a population of closely related, 

but genetically distinct variants termed quasispecies. Evolving HIV genetic diversity 

presents numerous obstacles for both the human immune response as well as the 

implementation of antiviral therapies, vaccines and microbicides. Recent studies utilizing 

new sequencing technologies and genomics tools have begun to reveal a vast amount of data 

regarding the genetics of both HIV and the human immune system. In this review, we will 

present a brief summary of recent studies examining HIV genetics and human genomics as 

well as how this body of knowledge will impact the development and implementation of 

future effective methods to both treat and prevent HIV infection.

Genetic Analysis of Transmitted Variants

Although the HIV global epidemic is characterized by an extraordinarily high level of viral 

genetic diversity, the viral quasispecies initially found in most individuals early in infection 

tends to be remarkably homogenous. Recent studies have focused on sampling sequences of 

the viral env gene from the viral quasispecies within HIV-infected individuals. The viral env 
gene encodes the highly variable viral surface glycoprotein (Env) required for entry into 

HIV target cells. Several studies based on recently infected individuals have established that 

in 60–90% of cases, depending on the population studied, HIV infection is apparently 

established by a single viral variant [2]. In multiple variant infections, only 2–5 variants can 

be found, although higher infection multiplicities have not been ruled out because sampling 

for many tissue compartments is not readily available. Infection with multiple variants has 

been observed to occur more frequently when the barrier of the host mucosal surface is 

compromised or bypassed, as with sexually transmitted infections, anal intercourse or 

intravenous drug users [3]. Additionally, infection with multiple variants has been linked to 

certain markers of faster disease progression [4]. Therefore, methods aimed at reducing the 

likelihood of infection with multiple variants, such as treatment of sexually transmitted 

infections in HIV-uninfected persons, will likely slow disease progression in those 

individuals who become HIV-infected.

Advances in bioinformatics analysis have enabled the compilation and comparison of viral 

sequences collected from a large number of newly infected individuals to identify common 

sequences and phenotypes that may be shared in HIV transmission. A recent study by 

Gnanakaran et al. [5] examined over 7,000 env sequences obtained from 275 samples 

collected during acute or chronic phases of HIV infection to search for signature genetic 

patterns specifically associated with acute infection. This analysis yielded 25 promising 

signatures, including the absence of a specific sequence known to facilitate viral escape from 

antibodies and several signatures that may be essential to proper expression and/or 

processing of the Env glycoprotein. Asmal et al. [6] extended this finding by demonstrating 

that sequences associated with acute infection indeed produce higher levels of Env and 

increased incorporation of Env into virions in vitro. Together these studies highlight the 

potential utility of mining large data sets of viral sequences from acute and chronic HIV 

infection for genetic patterns uniquely related to HIV transmission before specific 

hypotheses are further tested in experimental systems. Thus, genetic analysis of viral 
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sequences has begun to identify specific properties of all HIV transmitted variants that may 

be targeted in future vaccine and microbicide methods to prevent sexual transmission of 

HIV.

Evaluation of viral sequences in samples collected during clinical trials of HIV prevention 

strategies also afford the opportunity to examine breakthrough infections in treatment and 

control arms to identify characteristics of viral variants that manage to establish infection in 

the context of a specific intervention. The STEP trial, a double-blinded, phase 2b study of 

vaccine efficacy, attempted to induce immune responses against 3 HIV proteins, but the trial 

lacked efficacy in preventing infection [7]. Retrospectively, Rolland et al. [8] obtained and 

compared near full-length viral genomes from 68 HIV-infected individuals from both the 

vaccine and placebo arms of the STEP trial. Not surprisingly, breakthrough infections in the 

vaccine recipients were initiated by viruses with sequences divergent from the vaccine. 

Importantly, sequence differences between viruses establishing infection in vaccine and 

placebo recipients were almost exclusively restricted to the 3 viral proteins that comprised 

the vaccine. Thus, while this analysis highlights the challenges facing HIV vaccine 

development, the application of viral genetic analysis to breakthrough infections in clinical 

trials is being used to hone previously tested prevention methods in order to maximize 

efficacy. Taken together, novel strategies of analyzing HIV sequences are beginning to yield 

promising opportunities to develop new, and improve upon current, HIV prevention 

methods.

Insights from Analyses of Host Genomics

HIV diversity and its continuing evolution in human populations are dictated in part by host 

factors, including those that mediate innate and adaptive immune responses to HIV infection 

[9]. Comprehensive data from deep sequencing of the entire HIV genome [10] coupled with 

genome-wide search for host genetic factors important to HIV acquisition and control [11] 

are expected to facilitate a fine dissection of molecular mechanisms underlying the battle 

between HIV and host genomes.

To date, immunogenetics as a prominent frontier in AIDS research has already made 

important contributions to (i) identification of HIV-resistance factors (e.g. null CCR5 
alleles), (ii) the understanding of effective and durable immune control of HIV infection in 

elite or viremic controllers [12], (iii) mapping of viral epitopes for vaccine design, and (iv) 

evaluation of vaccine efficacy. Although human genomes have been scanned for patient 

populations with informative, HIV-related phenotypes [13, 14], several recent studies now 

offer new evidence that productive and transformative research may need to focus on 

systematic analysis of highly polymorphic human leukocyte antigen (HLA) molecules and 

killer cell immunoglobulin-like receptor (KIR) genes. Continued study of the complex virus/

host interaction will inform development and implementation of treatment and prevention 

regimens.

For example, 2 recent studies have demonstrated that individuals infected with HIV subtypes 

B and C have relatively low viral load when they carry HLA-DRB1*13:03, an infrequent 

allele that might have been missed by earlier studies for lack of statistical power [15, 16]. 
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Favorable HLA class II alleles are likely to target epitopes in HIV Gag instead of Env [16], 

which is consistent with the well-established notion that immune recognition of conserved 

epitopes in HIV Gag may be a common mechanism for effective immune control, as 

immune escape mutations in Gag typically lead to reduced viral fitness. In the AIDS vaccine 

trial (RV144) in Thailand, lack of neutralizing antibody (nAb) response was associated with 

HLA-DRB1 variants *11 and *16:02 [17]; vaccine recipients with the HLA-DQ heterodimer 

consisting of DQA1*05:01 and DQB1*03:01 were also unlikely to produce nAb after 

vaccination [17]. Future vaccine trials may need to consider HLA class II genotyping as 

another useful tool for deciphering correlates of immune protection, as supported by 

preclinical findings from an SIV-macaque model [18]. Of note, HLA class II alleles 

implicated by the RV144 trial bear no similarity to those (e.g. DRB1*01, *03, *07 and *15) 

reported earlier for several routinely applied vaccines, suggesting that nAb responses may 

differ by vaccine constructs and/or dosing regimens.

Unlike potent anti-HIV nAb that acts relatively late in the course of HIV infection, CTLs 

and NK cells presumably act early. As such, HLA class I and KIR gene variants with distinct 

functional properties can be analyzed against early phenotypes. This hypothesis has been 

tested in recent HIV seroconverters from sub-Saharan African countries [19]. In the acute-

phase of HIV infection (duration of infection <3 months), the majority of seroconverters 

with effective control of viremia had HLA-B*44 and B* 57 – 2 favorable HLA variants in 

the cohort [19]. These allelic products are known to target multiple conserved HIV epitopes, 

but their functional advantages may also further reflect intrinsic differences in protein 

expression [20]. One study has also called for close attention to HLAC expression, as certain 

alleles (e.g. C*06:02) may be functionally advantageous through avoidance of down-

regulation by microRNAs [21]. HLA-KIR interactions can provide another dimension for 

gauging the relevance of HLA function to HIV control, as at least 22 nonsynonymous 

mutations in the HIV genome are apparently attributable to several KIR genes (especially 

KIR2DL2) [22]. A clear picture about these multifactorial and multidimensional pathways 

may emerge soon to allow a fine-mapping of HIV mutations induced by CTL, nAb, NK, and 

other related effectors mediated by HLA and KIR gene products. However, it will require 

much more painstaking effort to determine the selection of these mutations relative to 

individual immune pressure, their patterns of reversion in the absence of immune pressure, 

and the replication capacity of mutated viruses. Further study will be necessary to 

understand the interplay between human immunogenetics and HIV in order to implement 

treatment and prevention methods with maximum efficacy.

Detection of Antiretroviral Drug Resistance

A complication in HIV clinical care stemming from the high mutation rate and genetic 

diversity of HIV is the emergence and persistence of mutations that confer resistance to 

drugs used in antiretroviral therapy (ART). Because primary or transmitted drug resistance 

mutations are associated with poorer treatment outcomes, a Department of Health and 

Human Services panel recommended that all persons newly diagnosed with HIV infection 

receive an HIV genotype prior to initiating therapy [23]. The conventional method for virus 

genotyping is Sanger sequencing; however, the sensitivity of this technology is limited in 

that it is unlikely to detect in individuals a variant present at a frequency of less than 20–
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30% of the quasispecies [24]. This limitation can lead to underestimating the burden of 

resistance in drug-naïve individuals, particularly for persons diagnosed long after becoming 

infected when transmitted resistant viruses may have become supplanted by more fit 

wildtype virus. Resistance can also be underestimated in ART-experienced individuals who 

may have low-expressing archived variants selected by prior treatment regimens [25]. The 

development of sensitive genotyping tools that allow for finer resolution of quasispecies 

subpopulations has uncovered hidden drug-resistant variants that are undetected by 

conventional sequencing. Some of the more common molecular methods used for resistance 

mutation detection include allele-specific or mutation-specific real-time PCR [26, 27], 

parallel allele-specific sequencing [28], ultra- deep (pyro) sequencing [29], and single-

genome sequencing [30], each with inherent technical complexities and resource 

requirements.

In a study of newly diagnosed ART-naïve individuals from North America, who had either 

wildtype HIV infections or who had at least one resistance-associated mutation as 

determined by conventional genotyping, allele (mutation)-specific PCR testing found 

previously undetected low-frequency transmitted resistance mutations in both groups [31]. 

The detection of minority resistance mutations in 17% of the conventionally genotyped 

wildtype virus samples and the identification of additional mutations in 10% of those with 

evidence of other resistance mutations suggested that bulk genotyping missed at least 40% 

of transmitted mutations in this population. Furthermore, the finding that some individuals 

had evidence of HIV resistant variants of distinct genotypes implied that it was possible for 

infections to involve more than one variant with the potential to impact treatment outcomes. 

Sensitive genotyping for surveillance, however, may not offer substantially more information 

than conventional genotyping in geographic regions with less-extensive treatment histories 

and lower prevalences of transmitted resistance.

In a case-control study also by Johnson et al. [31], mutation-specific PCR testing identified 

that 7/95 (7%) persons who experienced virological failure on first-line efavirenz-based 

ART had low-frequency drug resistance mutations at baseline; whereas, low-frequency 

resistance was found in only 2/221 (0.9%) treatment successes (p = 0.0038). A study by 

Goodman et al. [32], using allele-specific PCR at a mutation lower cut-off of 0.5%, found 

that minority-level detection of K103N, a non-nucleoside reverse transcriptase inhibitor 

(NNRTI) mutation, when present at ≥2,000 copies/ml was associated with a significant ~47-

fold higher risk of virological failure in first-line NNRTI-based ART [32]. This suggested 

that higher resistant variant loads within low-level populations were more strongly 

associated with treatment failure. Simen et al. [33] employed ultra-deep sequencing with a 

mutation detection lower limit of 1% to assess resistance in drug-naïve patients starting ART 

within the Flexible Initial Retrovirus Suppressive Therapies (FIRST) study of 3 initial 

regimens. Twice as many participants were identified to have resistance mutations with 

ultra-deep sequencing than was detected by standard sequencing, 28% versus 14%, 

respectively (p < 0.001). The presence of NNRTI resistance detected only by ultra-deep 

sequencing was significantly associated with virologic failure (HR 2.50; 95% CI, 1.17–

5.36). Taken together, these findings strongly support that, at least for NNRTI combination 

therapies with dual NRTIs, NNRTI-resistant variants may retain their impact even if present 

at a low frequency within the quasispecies.
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Low-frequency mutations, however, do not universally impact ART. Lataillade et al. [34] 

reported that in persons virologically failing on ritonavir-boosted protease inhibitor (PI/r) 

regimens, ultra-deep sequencing identified major protease inhibitor mutations at low levels 

only sporadically, and those variants remained susceptible to the boosted PI. Moreover, 

Codoñer et al. [35] retrospectively assessed the value of sensitive testing on predicting the 

success of salvage therapy for HIV-infected persons with heavy treatment histories and who 

have experienced virologic failure with deep salvage therapy. Here, again the additional few 

PI resistance mutations identified by deep sequencing prior to salvage therapy were 

inconsistently predictive of PI susceptibility.

Finally, another potential use for sensitive genotyping was revealed in the deep sequencing 

of the env V3 region by Swenson et al. [36] from participants who received either the R5-

specific entry inhibitor maraviroc or the NNRTI efavirenz in the MERIT trial. In this 

analysis, identification of low-level non-R5-tropic viruses at study entry were associated 

with poorer maraviroc treatment outcomes than those in the efavirenz arm. Limiting 

maraviroc to those with only R5-tropic virus would have resulted in maraviroc having a 

noninferior response to efavirenz. Therefore, because minority-level resistance class and 

design of antiretroviral regimen can impact treatment success, the benefit of sensitive 

genotyping in clinical management requires further exploration.

Conclusion

The advent of new sequencing and bioinformatics tools are beginning to benefit the 

development of improved methods for treating and preventing HIV infection. Despite the 

complicated genetic variability of HIV, sequencing and bioinformatics tools provide promise 

for identification of future viral targets of HIV prevention methods. Comprehensive studies 

of immunogenetics and viral sequences are beginning to understand the complicated 

interplay between virus and host, whereby specific alleles are associated with faster or 

slower disease progression. Increasingly sensitive ARV drug resistance testing methods have 

made it possible to detect minority drug resistance mutations which may impact the success 

of clinical patient management. In summary, data generated by studies of viral genetics and 

human immunogenetics provide valuable information to guide development of new 

strategies to improve HIV treatment and prevention.
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